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What is bitcoin fundamental value? A review of financial
and economic approaches

A long-term upper bound: Market Sizing

Market sizing is basically the process of estimating the potential of
a market and this is widely used by companies which intend to
launch a new product or service.

Woo et al. (2013) in a Bank of America Merrill Lynch report
estimated separately the value of bitcoin as a A) medium of
exchange and as B) store of value and then summed them up to get
a rough estimate of bitcoin fair value.
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What is bitcoin fundamental value? A review of financial
and economic approaches

1. More specifically, to compute the value as medium of exchange,
they considered two uses for bitcoin: e-commerce and money
transfer :

Ve−commercet = 1
10

( 10∑
i=1

HDUSt−i

CUSt−i

)
·B2Ct-1·Bitcoinshare ·

GDPworldt−1

GDPUSt−1

which is approximately $5bn worth of Bitcoins for the total
global on-line shopping.

Vmoney transfert = 1
3 (MKWUt + MKMGt + MKEt )

that is, the the average market capitalization of Western Union,
MoneyGram and Euronet (approximately $ 4.5bn)
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What is bitcoin fundamental value? A review of financial
and economic approaches

2. Woo et al. (2013) suggested that the closest assets to bitcoin
as a store value are probably precious metals or cash.

They suggested that the Bitcoin market capitalization for its role as
a store of value could reach $5bn.

Interestingly, they noted that this value is close to the value of the
total US silver eagles minted since 1986 (around $8bn - 12k tons)

Vstore of valuet = 0.6 · TSMt · Psilver ,t

where TSMt is the total sum of all US silver eagles minted since
1986 at time t, while Psilver ,t is the price for 1 troy ounce of silver
at time t.

5 / 72



What is bitcoin fundamental value? A review of financial
and economic approaches

Finally, Woo et al. (2013) computed the potential bitcoin fair value
as

Pbitcoint = (Ve−commercet + Vmoney transfert + Vstore of valuet )
TBt

where TBt is the total number of bitcoin in circulation, thus
obtaining a maximum fair value of Bitcoin approximately equal to
1300$ (Woo et al. (2013) used data up to 2012).

Finally, a similar approach is investigated by Huhtinen (2014), who
considered the current money aggregates M2 for USD, EUR and
JPY, and alternative scenarios for the portion of money supply that
could be replaced by bitcoin, instead. He argues the most realistic
replacement level is 0.1{%} and it could be achieved with a bitcoin
valuation of 1573 euro.
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A short-term lower bound: the marginal cost of bitcoin
production

Garcia et al. (2014) were the first to suggest that the fundamental
value of one bitcoin should be at least equal to the cost of the
energy involved in its production through mining.

⇒ lower bound estimate of bitcoin fundamental value.

More recently, a more refined model for the cost of bitcoin
production was developed by Hayes (2015a,b). Variables to consider:

1. the cost of electricity, measured in cents per kilowatt-hour;
2. the energy consumption per unit of mining effort, measured in

watts per GH/s (1 W/GH/s=1 Joule/GH);
3. the bitcoin market price;
4. the difficulty of the bitcoin algorithm;
5. the block reward (currently 12,5 BTC), which halves approx.

every 4 years
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A lower bound: the marginal cost of bitcoin production
In a competitive commodity market, an agent would undertake
mining if the marginal cost per day (electricity consumption) were
less than or equal to the marginal product (the number of bitcoins
found per day on average multiplied by the dollar price of bitcoin).

Hayes (2015a,b) develops his model by assuming that a miner’s
daily production of bitcoin depends on its own rate of return,
measured in expected bitcoins per day per unit of mining power.

The expected number of bitcoins expected to be produced per day
can be calculated as follows:

BTC/day∗ = [(β · ρ)/(δ · 232)] · sechr · hrday (1)

where β is the block reward (currently 12,5 BTC/block), ρ is the
hashing power employed by a miner, and δ is the difficulty (which is
expressed in units of GH/block).

8 / 72



A lower bound: the marginal cost of bitcoin production
The constant sechr is the number of seconds in an hour (3600),
while hrday is the number of hours in a day (24).

The constant 232 relates to the normalized probability of a single
hash per second solving a block, and is a feature of the 256-bit
encryption at the core of the SHA-256 algorithm.

These constants which normalize the dimensional space for daily
time and for the mining algorithm can be summarized by the
variable θ, given by θ = 24hrday · 3600/232sechr =
0.0000201165676116943. Equation (1) can thus be rewritten
compactly as follows:

BTC/day∗ = θ · (β · ρ)/δ (2)

Hayes (2015a,b) sets ρ = 1000 GH/s even though the actual
hashing power of a miner is likely to deviate greatly from this value.
However, Hayes (2015a,b) argues that this level tends to be a good
standard of measure. 9 / 72



A lower bound: the marginal cost of bitcoin production
The cost of mining per day, Eday can be expressed as follows:

Eday = (price per kWh · 24 hrday ·W per GH/s)(ρ/1000GH/s) (3)

Assuming that the bitcoin market is a competitive market, the
marginal product of mining should be equal to its marginal cost, so
that the $/BTC (equilibrium) price level is given by the ratio of
(cost/day) / (BTC/day):

p∗ = Eday/(BTC/day∗) (4)

⇒ This price level can be though as a price lower bound, below
which a miner would operate at a marginal loss and would probably
stop mining.
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A lower bound: the marginal cost of bitcoin production
Example: use the world average electricity cost ≈ 13.5 cents/KWh,
the average energy efficiency of bitcoin mining hardware≈ 0.25J/GH

⇒ the average cost per day for a 1000 GH/s mining rig is:
Eday = (price per kWh · 24 hrday ·W per GH/s)(ρ/1000GH/s)

= (0.135 · 24 · 0.25) · (1, 000/1, 000) = 0.81$/day

The number of bitcoins that a 1000 GH/s of mining power can find
in a day with a current difficulty of 2227847638504 is equal to
BTC/day∗ = θ · (β · ρ)/δ =

= 0.0000201165676116943 · (12, 5 · 1e12)/2227847638504
= 0.000112869969561757BTC/day .

The $/BTC price is given by equation (4):
p∗ = Eday/(BTC/day∗) =

= (0.81$/day)/(0.000112869969561757BTC/day)
≈ 7176.40 $/BTC 11 / 72



A lower bound: the marginal cost of bitcoin production

⇒ If we use the efficiency of the best bitcoin mining hardware
(Antminer S9) ≈ 0.1 J/GH, then p∗ ≈ 2870.56 $

⇒ If we use the efficiency of the best bitcoin mining hardware
(Antminer S9) ≈ 0.1 J/GH + Siberian or Chinese electricity costs ≈
3 cents/KWh, then p∗ ≈ 637.90 $
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A lower bound: the marginal cost of bitcoin production

Example 2: use the same approach to compute the lower bound for
Bitcoin Cash:

I Using the average energy efficiency of bitcoin mining hardware:
p∗BCH ≈ 954.45 $

I Using the efficiency of the best bitcoin mining hardware
(Antminer S9) ≈ 0.1 J/GH: p∗BCH ≈ 381.78 $

I Using the efficiency of the best bitcoin mining hardware
(Antminer S9) ≈ 0.1 J/GH + Siberian or Chinese electricity
costs ≈ 3 cents/KWh: p∗BCH ≈ 84.84 $
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Modelling bitcoin price dynamics: VAR & VECM
Most macro-financial analyses devoted to bitcoin prices employ:
1) Vecto-AutoRegression (VAR) models,

∆Yt−1=α + Φ1∆Yt−1+Φ2∆Yt−2+...+Φp∆Yt−p+εt (5)

2) Vector Error Correction (VEC) models,

∆Yt−1=α+BΓYt−1+ζ1∆Yt−1+ζ2∆Yt−2+...+ζp−1∆Yt−(p−1)+εt
(6)

where B are the factor loadings, while Γ the cointegrating vector.

Kristoufek (2013) is the first author to propose a multivariate
approach: hefound a significant bidirectional relationship, where
Google trends search queries influence prices and viceversa,
suggesting that speculation and trend chasing dominate the bitcoin
price dynamics.
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Modelling bitcoin price dynamics: VAR & VECM
Glaser et al. (2014) extended previous research by studying the
aggregated behavior of new and uninformed Bitcoin users within the
time span from 2011 to 2013, to identify why people gather
information about Bitcoin and their motivation to subsequently
participate in the Bitcoin system.

The main novelty is the use of regressors that are related to both
bitcoin attractiveness and bitcoin supply and demand:

I daily BTC price data,
I daily exchange volumes in BTC,
I Bitcoin network volume, which includes all Bitcoin transfers

caused by monetary transactions within the Bitcoin currency
network,

I daily views on the English Bitcoin Wikipedia page as a proxy
for measuring user attention,

I dummy variables for 24 events gathered from
https://en.bitcoin.it/wiki/History.
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Modelling bitcoin price dynamics: VAR & VECM
→ Glaser et al. (2014) are the first to consider both exchange (EV )
and network volumes (NV ): their idea is that if a customer want to
buy bitcoin to pay for goods or services, exchange and network
volumes will share similar dynamics, otherwise only exchange-based
volumes will be affected.

⇒ They found that the both increases in Wikipedia searches and in
exchange volumes do not impact network volumes, and there is no
migration between exchange and network volumes, so that they
argued that (uninformed) users mostly stay within exchanges,
holding Bitcoin only as an alternative investment and not as a
currency.

⇒ Glaser et al. (2014) found that Bitcoin users seem to be
positively biased towards Bitcoin, because important negative events,
like thefts and hacks, did not lead to significant price corrections.
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Modelling bitcoin price dynamics: VAR & VECM

Bouoiyour and Selmi (2015), Bouoiyour et al. (2015) and Kancs et
al. (2015) are the first studies to consider three sets of drivers to
model bitcoin price dynamics:

I technical drivers (bitcoin supply and demand),
I attractiveness indicators
I and macroeconomic variables.

In general, all papers confirm that bitcoin attractiveness factors are
still the main drivers of bitcoin price, followed by traditional supply
and demand related variables, while global macro-financial variables
play no role.

Example: Bouoiyour and Selmi (2015) use these variables: . . .
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Modelling bitcoin price dynamics: VAR & VECM
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Modelling bitcoin price dynamics: VAR & VECM

⇒ Using a dataset spanning between 05/12/2010 and 14/06/2014,
Bouoiyour and Selmi (2015) found that in the short-run, the
investors attractiveness, the exchange-trade ratio, the estimated
output volume and the Shangai index have a positive and
significantly impact on Bitcoin price, while the monetary velocity,
the hash rate and the gold price have no effect.

⇒ Instead, in the long-run, only the exchange-trade ratio and the
hash rate have a significant impact on bitcoin price dynamics.

These results hold also with the inclusion of a dummy variable to
account for the bankruptcy of a major Chinese bitcoin trading
company in 2013, with oil prices, the Dow Jones index and a
dummy variable to consider the closure of the Road Silk by the FBI
in October 2013.
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Modelling bitcoin price dynamics: Bayesian VAR
3) Bayesian VARs models
Bayesian methods treat the value of an unknown model parameter
vector θ as a probability distribution π(θ|Y ), which is the called the
posterior distribution of θ given the data Y .

The prior distribution, π(θ), is set externally and reflects the
researcher’s prior ideas on the unknown parameter vector, while
l(Y |θ) is the likelihood function, which depends on the information
from the given data Y .

The Bayes’ theorem is then used to link all these distributions by
means of this formula:

π(θ|Y ) = π(θ)l(Y |θ)∫
π(θ)l(Y |θ)dθ

Given that the denominator is a normalizing constant, the posterior
is proportional to the product of the likelihood and the prior, that is
π(θ|Y ) ∝ π(θ)l(Y |θ).
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Modelling bitcoin price dynamics: Bayesian VAR
Let consider the following reduced form VAR,

Yt = Φ0 + Φ1Yt−1 + . . .+ ΦpYt−p + εt , εt ∼ N(0,Σ)
where Yt = (Y1t , . . .Ynt) is a n × 1 vector, Φ0 is a n × 1 vector of
constants, Φl with l = 1, . . . , p are the usual autoregression n × n
coefficient matrices.

The previous equation can be written more compactly as
Yt = Φ′Xt + εt using Xt = [1 Y ′t−1, . . . ,Y ′t−p]′ and
Φ = [Φ0 Φ1 . . .Φp]. If the variables and shocks are further grouped
as follows Y = [Y1, . . . ,YT ]′, X = [X1, . . . ,XT ]′, E = [ε1, . . . , εT ]′,
we can write the VAR model even more compactly:

Y = XΦ + E
A Bayesian VAR combines the likelihood function L(Y |Φ,Σ) with a
prior distribution p(Φ,Σ) to get a posterior distribution for the
model parameters p(Φ,Σ|Y ):

p(Φ,Σ|Y ) ∝ p(Φ,Σ)L(Y |Φ,Σ)
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Modelling bitcoin price dynamics: Bayesian VAR
There are several possible choices for priors to be used with
Bayesian VAR models: I present below the conjugate normal-inverse
Wishart prior which is a widely used choice and it is implemented
into the bvarr package.The prior is reported below:{

Σ ∼ IW(S, ν)
Φ|Σ ∼ N(Φ,Σ⊗ Ω)

where the scale matrix S is diagonal and its non-zero elements
assure that the mean of Σ is equal to the fixed covariance matrix of
the standard Minnesota prior,

(S)ii = (ν − n − 1)σ̂2
i

and σ2
i is commonly set to be equal to the variance estimate of

residuals in a univariate AR model. The degrees of freedom of the
inverse Wishart distribution are set to be greater than or equal to
the max{n + 2, n + 2h − T} to guarantee the existence of the prior
variance of the regression parameters and the posterior variances of
the forecasts at horizon h.
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Modelling bitcoin price dynamics: Bayesian VAR
The matrix Φ is set to Φ = E (Φ) and the matrices Φl are given by:

(Φl )ij =
{
δi , i = j , l = 1
0 otherwise

The matrix Ω is diagonal and it depends on the following
hyperparameters:

Ω = diag{Ω0,Ω1, . . . ,Ωp}

(Ωl )jj =
(

λ

lλl σ̂j

)2
l = 1, . . . , p, Ω0 = λ2

0

where λ determines the overall tightness of the prior and the relative
weight of the prior with respect to the information incorporated in
the data, λl manages the speed of the decrease of the prior variance
with increasing the lag length, while λ0 controls the relative
tightness of the prior for the constant terms.
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Modelling bitcoin price dynamics: Bayesian VAR
The posterior distribution formed by combining the previous prior
distribution with a likelihood function is also normal - inverse
Wishart, see e.g. Zellner (1996):{

Σ|Y ∼ IW(S, ν)
Φ|Σ,Y ∼ N(Φ,Σ⊗ Ω)

with the following parameters:

ν = ν + T
Ω = (Ω−1 + X ′X )−1

Φ = Ω · (Ω−1Φ + X ′Y )
S = S + Ê ′Ê + Φ̂′X ′X Φ̂ + Φ′Ω−1Φ− Φ′Ω−1Φ
Φ̂ = (X ′X )−1X ′Y
Ê = Y − X Φ̂
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Modelling bitcoin price dynamics: Bayesian VAR
Doan et al. (1984) and Sims (1993) proposed to add two other
priors to the previous prior distribution to include the beliefs that
the data may be non-stationary and cointegrated:
⇒ A sum-of-coefficients prior assumes that the sum of all the lag
parameters for each dependent variable is equal to one. This prior is
implemented by combining the previous system with the following
artificial dummy-observations:

Y SC = 1
λsc

[diag(δ1µ1, . . . , δnµn)]

XSC = 1
λsc

[0n×1 (11×p)⊗ diag(δ1µ1, . . . , δnµn)]

where (11×p) is a unitary [1× p] vector, and µi is i-th component
of vector µ, which contains the average values of initial p
observations of all variables in the sample, µ = 1

p
∑p

t=1 Yt .

When λsc → 0 no cointegration exists and there are as many unit
roots as variables.
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Modelling bitcoin price dynamics: Bayesian VAR
⇒ The dummy initial observation prior proposed by Sims (1993)
models the belief that the variables have a common stochastic
trend, so that the average value for a variable is a linear
combination of the average values of all the other variables.

A single dummy observation is added such that the values of all
variables are set to be equal to the averages of the initial conditions
µi normalized with a scaling factor λio:

Y IO = 1
λio

[(δ1µ1, . . . , δnµn)]

X IO = 1
λio

[1 (11×p)⊗ (δ1µ1, . . . , δnµn)]

When λio → 0, the model assumes that either all variables are
stationary with means equal to sample averages of the initial
observations, or non-stationary without drift terms and cointegrated.
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Modelling bitcoin price dynamics: High-dimensional VAR
models with LASSO

The last years have witnessed an increasing statistical literature
dealing with the forecasting of high-dimensional multivariate time
series, focusing particularly on the lasso, see Tibshirani et al. (1996),
and its structured variants like the group lasso proposed by Yuan et
al. (2006) and the sparse group lasso by Simon et al. (2013).

The R package BigVAR adapted the previous penalized regression
solution algorithms to a multivariate time series setting: it considers
the VARX-L framework proposed by Nicholson et al. (2017) and the
class of Hierarchical Vector Autoregression (HVAR) models
suggested by Nicholson et al.(2016) that deals with the issue of
VAR lag order selection by imposing a nested group lasso penalty.

Given the increasing dimension of cryptocurrencies datasets, these
approaches can be of interest to financial professionals and
researchers alike. I focus here on HVAR models.
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Hierarchical Vector Autoregression (HVAR) models
4) HVAR class of models: Nicholson et al. (2016) proposed a
class of models which include the lag order selection into
hierarchical group lasso penalties.

HVAR(p) models induce sparsity and a low maximum lag order.
Moreover, lag orders are allowed to change across marginal models,
that is across variables.

The HVAR penalty structures are reported in Table 1.

Table 1: HVAR penalty functions

Group Name PY (Φ)
Componentwise

∑n
i=1

∑p
l=1 ||Φl :p

i ||2

Own/Other
∑n

i=1

∑p
l=1

[
||Φl :p

i ||2 + ||Φl
i,−i , Φ[l+1]:p

i ||2
]

Elementwise
∑n

i=1

∑n
j=1

∑p
l=1 ||Φl :p

ij ||2
Lag-weighted Lasso

∑p
l=1 lγ ||Φl ||1
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Hierarchical Vector Autoregression (HVAR) models

The Componentwise HVAR penalty allows for the maximum lag
order to change across marginal models but, within a single variable
equation, all components have the same maximum lag. Therefore,
we can have at maximum n different lag orders.

The Own/Other HVAR penalty is similar to the Componentwise
HVAR, but it prioritizes the coefficients of lagged values of the
series of forecasting interest (the so-called ‘own’ lags) over those of
other variables.

⇒ This approach is similar to a Bayesian VAR with a Minnesota
Prior (Litterman, 1979) where the variable own lags are considered
more informative than the lags of other variables.

29 / 72



Hierarchical Vector Autoregression (HVAR) models

The Elementwise HVAR is the most general structure, because every
variable in every equation is allowed to have its own maximum lag
so that there can be n2 possible lag orders.

The Lag-weighted Lasso penalty structure is a lasso penalty that
increases geometrically with lags and the additional penalty
parameter γ ∈ [0, 1] is jointly estimated with λ using sequential
cross-validation.
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Hierarchical Vector Autoregression (HVAR) models

Examples of the previous four sparsity patterns are reported below:
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A (simple) forecasting comparison
I performed a simple exercise to backtest the forecasting
performances of the previous multivariate models. I used the dataset
data_bitcoin_multi from the bitcoinfinance package. This is a
dataframe of 1447 rows and 12 columns containing the following
variables:

I timestamp: daily time-stamp;
I Close: Average BTCUSD market price across major bitcoin

exchanges. Source: blockchain.info;
I Volume_traded_USD: The total USD value of trading volume

on major bitcoin exchanges. Source: blockchain.info;
I Google: Normalized daily Google search data for the word

“bitcoin”;
I Transaction_value: The total estimated value of transactions

on the Bitcoin blockchain. Source: blockchain.info;
I Hash_Rate: The estimated number of tera hashes per second

(trillions of hashes per second) the Bitcoin network is
performing. Source: blockchain.info . . .
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A (simple) forecasting comparison

I Gold: Gold price in USD. Source: investing.com;
I Shanghai_index: The Shanghai market index. Source:

yahoo.finance;
I total_bitcoins: The total number of bitcoins that have already

been mined; in other words, the current supply of bitcoins on
the network. Source: blockchain.info;

I New_posts: The number of new posts on online BitCoin
forums extracted from bitcointalk.org;

I New_members: The number of new members on online
BitCoin forums extracted from bitcointalk.org;

I Dow_Jones: Dow Jones stock market index. Source:
yahoo.finance;

33 / 72



A (simple) forecasting comparison
I use a 250-day rolling window to compute the 1-step and 10-step
ahead forecasts for each model, as well as the RMSE and MAE.
More specifically, we consider the following models:

I a VAR model with all the variables in levels;
I a VAR model with all the variables in first differences;
I a VAR model with all the variables in log-levels;
I a VAR model with all the variables in first log-differences (= log-returns);
I a VECM model with all the variables in levels/first differences;
I a VECM model with all the variables in log-levels/log-returns;
I a Bayesian VAR model with the conjugate normal-inverse Wishart prior

and all the variables in levels;
I a Bayesian VAR model with the conjugate normal-inverse Wishart prior

and all the variables in first differences;
I a Bayesian VAR model with the conjugate normal-inverse Wishart prior

and all the variables in log-levels;
I a Bayesian VAR model with the conjugate normal-inverse Wishart prior

and all the variables in first log-differences (= log-returns);
I a Elementwise HVAR for data in log-returns.

To simplify the computational setting, I considered only multivariate
models with lags up to 4 and only one HVAR model. 34 / 72



A (simple) forecasting comparison
Model RMSE_one RMSE_ten MAE_one MAE_ten RMSEr_one RMSEr_ten

1 VAR 32.90585 6179.76592 15.730572 256.90057 0.09468916 10.8188974
2 VAR_df 33.81572 1730.80027 16.006390 110.41668 0.09093941 3.1583757
3 VAR_ln 26.70353 114.08447 12.700447 56.77481 0.06474223 0.3821900
4 VAR_ln_df 27.28904 103.89433 13.150808 52.27589 0.06501200 0.2269520
5 VECM_df 16.42422 137.75005 4.718925 30.29227 0.10005716 0.7353224
6 VECM_ln_df 25.51986 108.27673 12.780186 55.90240 0.06285254 0.3567914
7 BVAR 26.03046 732.61624 12.533003 84.03390 0.07023995 1.4064061
8 BVAR_df 26.60896 147.43113 13.276180 56.15538 0.06627483 0.7663963
9 BVAR_ln 24.15452 105.64368 11.364833 51.28369 0.05947483 0.2664181
10 BVAR_ln_df 25.68545 98.89014 12.650457 51.93367 0.05938815 0.2051344
11 HVAR 23.79271 98.02010 11.465751 51.43830 0.05763195 0.1993132

Model MAEr_one MAEr_ten NA_perc
1 VAR 0.05088815 0.5700199 0.00000
2 VAR_df 0.04970261 0.2856069 0.00000
3 VAR_ln 0.03732443 0.1789157 0.00000
4 VAR_ln_df 0.03691062 0.1496810 0.00000
5 VECM_df 0.03540444 0.1608158 44.56613
6 VECM_ln_df 0.03667080 0.1618333 0.00000
7 BVAR 0.03884371 0.2334930 0.00000
8 BVAR_df 0.04024276 0.1693850 0.00000
9 BVAR_ln 0.03199203 0.1459336 0.00000
10 BVAR_ln_df 0.03515411 0.1402560 0.00000
11 HVAR 0.03194456 0.1384539 0.00000 35 / 72



Bitcoin Market Price Discovery
Brandvold et al. (2015) are the first (and so far the only ones) to
study the price discovery process in the Bitcoin market, which
consists of several independent exchanges.

This topic is frequently discussed in the bitcoin community because
knowing which exchange reacts most quickly to new information
(thus reflecting the value of Bitcoin most precisely), is clearly of
outmost importance for both short-term traders and long-term
investors.

The price discovery literature employs mainly three methodologies:

I the information share method by Hasbrouck (1995),
I the permanent-transitory decomposition by Gonzalo and

Granger (1995)
I the structural multivariate time series model by de Jong et al.

(2001) which is an extension of Harvey (1989).
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Bitcoin Market Price Discovery
Brandvold et al. (2015) used the method by de Jong et al. (2001)
because

I it has the advantage that the information share is uniquely
defined, unlike the information share computed with the
Hasbrouck’s (1995) model,

I and it takes the variance of innovations into account, unlike
Gonzalo and Granger (1995), so that a price series with low
innovation variance gets a low information share.

This multivariate model by de Jong et al. (2001) was proposed to
estimate the information share of various exchanges with respect to
the information generated by the whole market.
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Bitcoin Market Price Discovery
⇒ The prices are composed of two components, one common
(unobserved) underlying random walk and an idiosyncratic specific
noise for each exchange.

⇒ The random walk component is interchangeably referred to
either as the efficient price or the fundamental news component.

⇒ It follows immediately from this model structure that the
exchanges’ prices are cointegrated by construction, while the
idiosyncratic component can be due to specific conditions at an
exchange, traders’ strategic behaviour, or other shocks.

The theoretical setup in Brandvold et al. (2015) assumes n
individual exchanges and m corresponding markets, with
m = n, whereas a market for an exchange is defined as all the
other exchanges combined.
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Bitcoin Market Price Discovery
Brandvold et al. (2015) denote Pe as the vector of exchange prices,
Pm as the vector of market prices, while Ue and Um represents the
vectors of idiosyncratic shocks for the exchanges and the markets,
respectively.

P∗denotes the efficient price, pe= ln Pe , ue= ln Ue and p∗= ln P∗,
so that the logarithm of the n-vector of exchange prices and the
m-vector of market prices are given by:

pe
t = p∗t + ue

t
pm

t = p∗t + um
t

(7)

where p∗ is a random walk.

This is a special case of an unobserved components structural
model, see Harvey (1989) for more details.
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Bitcoin Market Price Discovery
If we denote the log-returns of the efficient price over the interval
(t − 1, t) as denoted rt = p∗t − p∗t−1, then the model assumptions
are given below:

E [r2
t ] = σ2

E [rtue
it ] = ψi

E [rtum
jt ] = ψj

E [rtue
i ,t+l ] = γli , l ≥ 0

E [rtum
j,t+l ] = γlj , l ≥ 0

E [rtue
i ,t−k ] = 0, k ≥ 0

E [rtum
j,t−k ] = 0, k ≥ 0

E [ue
it ] = Ωe

E [ue
itum

jt ] = Ω, i = j
E [ue

i ,t−k ] = 0, k 6= 0
E [ue

itum
j,t−k ] = 0, k 6= 0

(8)

where i refers to exchange i , j to market j , while ψ, γ are (n × 1)
vectors and Ω, Ωe are (n × n) matrices. 40 / 72



Bitcoin Market Price Discovery
The fundamental news component rt can be correlated with
concurrent and future idiosyncratic components, but is otherwise
uncorrelated.

Instead, the idiosyncratic components are serially uncorrelated and
they reflect the noise present in intradaily data.

These restrictions on the correlation structure are needed to identify
the model, see Harvey (1989) details. Given the previous structure,
the log-returns of observed prices are defined as followed:

yit = pit − pi ,t−1 = p∗t + uit − p∗t−1 − uit−1 = rt + uit − uit−1 (9)

so that the vectors of exchanges prices and market prices are:
Y e

t = ιrt + ue
t − ue

t−1
Ym

t = ιrt + um
t − um

t−1
(10)

where ι is a vector of ones with n = m elements.
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Given the assumptions in (8), the serial covariances of Yt are

E [YtY ′t ] = σ2ιι′ + ιψ′ + ψι′ + 2Ω
E [YtY ′t−1] = −ψι′ − Ω + γι′

E [YtY ′t−2] = −γι′
(11)

Similarly, the serial covariance between an exchange and its
corresponding market, that is the covariance between an element in
vector Y e and the corresponding element in vector Ym , is given by

E [yjtyit ] = σ2 + ψj + ψi + 2ωij
E [yjtyi ,t−1] = −ψj − ωij + γj
E [yjtyi ,t−2] = −γj

(12)

while the first order autocorrelation for exchanges is

ρ1,ii = −(ψi + ωe
ii − γi )

σ2 + 2(ψi + ωe
ii )

(13)
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Bitcoin Market Price Discovery
The parameter ψi -which is the covariance between the
fundamental news component and the idiosyncratic
component- is of crucial importance because it shows how
the market learns after a price change from an individual
exchange:

⇒ a high value for ψi implies that a price update from that
exchange has an high information content for the whole market.

To explain this issue, consider the covariance between the
fundamental news component and a price change at an exchange:

Cov(yit,rt) = σ2 + ψi (14)

which is derived from (8) and (9). It follows immediately that the n
covariances between the exchange updates and the fundamental
news component are determined by n+1 parameters, so that an
identifying restriction is needed.
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Bitcoin Market Price Discovery
⇒ de Jong et al. (2001) suggested the idea that the
information generated by the price update of each exchange
should be equal on overage to σ2, the variance of rt .

Therefore, if we consider the average covariance between the price
change of a selected exchange and the fundamental news,

n∑
i=1

πiCov(yit,rt) = π′(σ2ι+ ψ) = σ2 + π′ψ (15)

where π is a vector of weights adding to one (more later), then the
assumption that σ2 is the unconditional covariance of a exchange
price change and the news component imposes π’ψ = 0.

This restriction is sufficient to identify the model parameters and
also leads to a definition of πi as the activity share of an exchange,
defined as the fraction of trades that happened on exchange i , or
simply, the probability that a trade took place on exchange i
(Brandvold et al., 2015). 44 / 72



Bitcoin Market Price Discovery
⇒ If we multiply the covariance between the fundamental news
component and the price change of exchange i -eq. (14)- with the
probability πi , we get a measure of how much information is
generated by the price change of exchange i .

⇒ Dividing this by the total information generated in the market
σ2, we obtain the information share for exchange i :

ISi = (σ2 + ψi )πi
σ2 = πi

(
1 + ψi

σ2

)
(16)

1. the information shares add to 1, thus simplifying interpretation
2. the joint information share of two exchanges simply equals the

sum of their individual information shares.
3. an exchange with a contemporaneous covariance between its

idiosyncratic component and the fundamental news component
greater than zero ψi > 0) has a higher information share than
activity share.
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The estimation procedure of the model parameters consists of two
steps:

1. the sample covariances E[yjtyi ,t−k ], where k=0,1,2, and the
autocorrelations ρ1,ii are estimated;

2. the structural parameters are computed using (12)-(13) and a
nonlinear optimization softwarer.

⇒ Besides, some parameters can be found directly: given that σ2 is
the variance of rt and given the assumption by Brandvold et al.
(2015) that the seven exchanges in their dataset represent the whole
Bitcoin market, σ2 can be computed as the variance of the
aggregated return of the seven exchanges.

⇒ Similarly γ can be computed directly using the sample covariance
between the market returns and its corresponding exchange returns
lagged two intervals.

⇒ This leaves only ωe
ii , ωij , ψi and ψi to be estimated in a 2nd step
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The objective function used by Brandvold et al. (2015) to find the
remaining parameters with a nonlinear programming solver is given
below:

Z =
n∑

i=1
|πiψi | = 0 (17)

subject to the following set of constraints
ρ1,ii = −(ψi +ωe

ii−γi )
σ2+2(ψi +ωe

ii )
(i = 1, . . . , n)

E [yjtyi ,t−1] = −ψj − ωij + γj (i = j = 1, . . . , n)
E [yjtyi ,t−2] = −γj (i = j = 1, . . . , n)
E [yityj,t−2] = −γi (i = j = 1, . . . , n)
ωe

ii ≥ 0 (i = 1, . . . , n)

(18)

Brandvold et al. (2015) tried also alternative objective functions
and starting values, but the estimated parameters showed only
minimal differences.
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Brandvold et al. (2015) highlighted that there is no agreement in
the financial literature on how to measure the trading activity of a
specific exchange relative to all trading activity in the market (ψi).

⇒ They used the simple average of the daily volume and the daily
number of trades for each exchange, rescaled so that the sum of the
resulting πi equal to 1.

⇒ Note that the choice of πi only affects the magnitude of the
information share, but not whether ψi is positive or negative.

⇒ Brandvold et al. (2015) suggested a simple robustness check: set
πi = 1/n for all exchanges and see how the results change.
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Bitcoin Market Price Discovery
Brandvold et al. (2015) used data from seven exchanges: Bitfinex,
Bitstamp, BTC-e (Btce), BTC China(Btcn) and Mt.Gox (Mtgox),
Bitcurex and Canadian Virtual Exchange (Virtex). Data covered the
period April 1st 2013–February 25th 2014, till bankruptcy of Mtgox.

They found that the two exchanges with positive ψ for the entire
period were Btce and Mtgox, thus indicating that these exchanges
were more informative than their competitors.

Similar evidence was provided by the information share, which was
highest for Btce and Mtgox (0,322 and 0.366, respectively).

⇒ Information shares change over time: for example, the
information share of Btcn first increased from 0.040 in April 2013 to
0.325 in December 2013 because some large Chinese companies
(like Baidu) started accepting Bitcoin as payment, but then its
information share fell to 0.124 in January 2014 after the Chinese
government banned payment companies from clearing Bitcoin.
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Bitcoin Market Price Discovery

⇒ An empirical example with R using the function
information_shares() from the bitcoinfinance package.

I show an example using the bitcoin prices from five exchanges
covering the time sample [2016-10-20/2017-04-20]: Bitstamp, Itbit,
Gdax, Kraken, and Localbitcoins.

The latter is not formally an exchange, but an online service which
facilitates over-the-counter trading of local currency for bitcoins,
that is it gives the opportunity to a buyer and a seller to conduct
direct transactions.
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Bitcoin Market Price Discovery
data_file<-system.file("extdata", "btcusd_IS.csv", package = "bitcoinFinance")
dat<-read.csv(file = data_file,header = TRUE,sep = ";",dec = ".")

# Vector of activity shares based on trading volumes and trades frequency
pivector<-c(0.33,0.06,0.48,0.11,0.02)
bitcoinFinance::information_shares(dat,pi=pivector, opt_method="nlminb")

Information shares PSI_coefficients
1 0.24368444 -8.440675e-04
2 0.05667536 -1.788117e-04
3 0.42498757 -3.698466e-04
4 0.11338134 9.919682e-05
5 0.16127130 2.279428e-02

# Robustness check: vector of activity shares set to 1/n for all five exchanges
n<-ncol(dat)-1
pivector<-c(rep(1/n,n))
bitcoinFinance::information_shares(dat,pi=pivector, opt_method="nlminb")

Information shares PSI_coefficients
1 0.1028536 -0.0015674684
2 0.1074254 -0.0014937014
3 0.1411473 -0.0009495954
4 0.1244755 -0.0012185958
5 0.5240982 0.0052293611 51 / 72



Detecting Bubbles and explosive behavior in bitcoin prices
Tests for financial bubbles can be by grouped into two sets:

1. Tests to detect a single bubble:

I the Log Periodic Power Law (LPPL) model;

I the Fry (2014) model and the role of volatility.

2. Tests to detect (potentially) multiple bubbles:

I the DS LPPLS Confidence and Trust indicators;

I the Generalized-Supremum ADF (GSADF) test;

I the EXponential Curve Fitting (EXCF) method.

Due to time constraints, I will briefly present only those which can
be of interest to financial professionals.
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1) Testing for a single bubble: LPPL models. The expected
value of the asset log price in a upward trending bubble according to
the LPPL equation is given by,

E [ln p(t)] = A+B(tc − t)β +C(tc − t)β cos[ω ln(tc − t)−φ] (19)

where A > 0 is the value of [ln p(tc)] at the critical time tc which is
interpreted as the end of the bubble,

B < 0 the increase in [ln p(t)] over the time unit before the crash

C 6= 0 is the proportional magnitude of the oscillations around the
exponential growth,

0 < β < 1 to ensure a finite price at the critical time tc of the
bubble and quantifies the power law acceleration of prices,

ω is the frequency of the oscillations during the bubble,

while 0 < φ < 2π is a phase parameter.
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Financial bubbles are defined in the LPPL model as transient
regimes of faster-than- exponential price growth resulting from
positive feedbacks, and these regimes represent “positive bubbles”.

Example: Conditions for a (positive) bubble to occur within
this framework:

1. 0 < β < 1, which guarantees that the crash hazard rate
accelerates.

2. The second major condition is that the crash rate should be
non-negative, as highlighted by van Bothmer and Meister
(2003),

b ≡ −Bβ − |C |
√
β2 + ω2 ≥ 0.

3. Lin et al. (2014) added a third condition, requiring that the
residuals from fitting equation (19) should be stationary.

⇒ MacDonell (2014) used the LPPL model to forecast successfully
the bitcoin price crash that took place on December 4, 2013 54 / 72
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To have an idea of the LPPL model, let’s simulate a price trajectory
following this model using the function lppl_simulate() from the
bubble package:

lppl_simulate=function(T=500, true_parm){
bet=true_parm[1]; ome=true_parm[2]; phi=true_parm[3];
A= true_parm[4]; B =true_parm[5]; C= true_parm[6]; ws=true_parm[7];
tc=true_parm[8];
tt_sim=seq(1, T, 1);
sdum=rep(1,T);
f_t=(tc - tt_sim)^bet;
g_t=( (tc - tt_sim)^bet )*cos( ome*log(tc - tt_sim) + phi );
x=exp(A*sdum +B*f_t + C*g_t +sqrt(ws)*rnorm(T) );
plot(x, type="l", xlab = "Time index", ylab = "Price")
return(x)

}

tparm=c(0.353689, 9.154368, 2.074608, 7.166421,-0.434324, 0.035405,
0.000071, 530)

aa=lppl_simulate(500,tparm)
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Sound familiar?
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2) Tests to detect (potentially) multiple bubbles:

The underlying idea of almost all these tests is

I to take a test for a single bubble,

I compute this test using a rolling regression where you change
both the starting point and the ending point,

I simulate the distribution for this rolling test, either using the
bootstrap for each time window (LPPL Confidence and Trust
indicators), or simulating it once using the sup statistic
(GSADF test)
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2A) Testing for a multiple bubbles:The DS LPPLS
Confidence and Trust indicators.

The starting point is an LPPL model estimated using the procedure
proposed by Filimonov and Sornette (2013).

Then, for each fixed end data point t2, the time series is fitted in
shrinking windows (t1, t2), whose length dt = t2 − t1 decreases from
750 trading days to 125 trading days, because the start date t1 is
shifted in steps of five trading days.

The total estimation windows for each t2 is thus equal to 126.

A set of search space and filter conditions are then imposed to
minimize estimation problems. These filters are reported in Table 2,
which reproduces Table 1 of Sornette et al. (2015).
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Item Notation Search space Filtering condition 1 Filtering condition 2
Three β [0, 2] [0.01,1.2] [0.01,0.99]
nonlinear ω [1, 50] [2,25] [2,25]
parameters tc [t2 − 0.2dt, [t2 − 0.05dt, [t2 − 0.05dt,

t2 + 0.2dt] t2 + 0.1dt] t2 + 0.1dt]
Oscillations

(
ω
2π

)
ln
[
|tc−t1|
|tc−t2|

]
- [2.5,+∞) [2.5,+∞)

Dumping β|B|
ω|C| - [0.8,+∞) [1,+∞)

Relative error
∣∣ pt−p̂t

p̂t

∣∣ - [0,0.05] [0,0.2]

Table 2: Search space and filter conditions for the qualification of valid
LPPLS fitsa according to Sornette et al. (2015).

Fantazzini (2016) proposed to use the classical set of filtering
conditions:

I Positive bubble: 0 < β < 1,B < 0,
b = [−B · β − |C | ·

√
β2 + ω2] > 0 (hazard rate), LPPL

residuals stationary at the 5% level (using the KPSS test);
I Negative bubble: 0 < beta < 1,B > 0,

b = [−B · β − |C | ·
√
β2 + ω2] < 0 (hazard rate), LPPL

residuals stationary at the 5% level (using the KPSS test). 60 / 72
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→ Only the estimated LPPL models that satisfy the previous
conditions are considered valid, and this set of qualified fits is then
used to build the following two bubble indicators:

I DS LPPLS confidence: this indicator represents the fraction of
fitting windows for which the estimated LPPL models satisfy
the filtering condition 1 reported in Table 2.

It is used to measure the sensitivity of the realized bubble pattern
with respect to the time scale dt which decreases from 750 to 125
trading days for a total of 126 estimating windows.

A large value shows that the LPPL pattern can be found at most
scales and is thus rather strong, whereas a small value signals a
weak pattern which is present only in a few estimating windows.
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I DS LPPLS trust: it is an indicator that wants to assess the

sensitivity of the estimated LPPL models to different
realizations of the noise in the financial time series.

The residuals are re-sampled 100 times and they are added to the
estimated LPPL model to generate 100 synthetic price time series
which are supposed to be independent realizations of the same price
pattern.

The DS LPPLS trust indicator is then defined as the median level
over the 126 time windows of the fraction among the 100 synthetic
time series that satisfy the filtering condition 2 in Table 2.

It is a measure of how closely the theoretical LPPL model matches
the empirical time series data. Sornette et al. (2015) suggest that,
as a rule of thumb, a DS LPPLS trust value larger than 5% shows
that the price process is not sustainable and that there is a risk of a
critical transition taking place. 62 / 72
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Bitcoin price series with the the DS-LPPLS confidence indicator
overlaid using Sornette et al. (2015) filter conditions

[Warning: extremely simplified computional setting (only 5
estimation windows instead of 126)]
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Bitcoin price series with the the DS-LPPLS confidence indicator
overlaid using Fantazzini (2016) filter conditions

[Warning: extremely simplified computional setting (only 5
estimation windows instead of 126)]
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2B) Testing for a multiple bubbles: the
Generalized-Supremum ADF test (GSADF).
Tests specifically designed for detecting multiple bubbles were
recently proposed by Phillips and Yu (2011), Phillips et al. (2011)
and Phillips et al. (2015) and they share the same idea of using
sequential tests with rolling estimation windows.

More specifically, these tests are based on sequential ADF-type
regressions using time windows of different size, and they can
consistently identify and date-stamp multiple bubble episodes even
in small sample sizes.

We will focus below on the Generalized-Supremum ADF test
(GSADF) proposed by Phillips, et al. (2015) -PSY henceforward-
which builds upon the work by Phillips and Yu (2011) and Phillips
et al. (2011), because it has better statistical properties in detecting
multiple bubble than the latter two tests.
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This test employs an ADF regression with a rolling sample, where
the starting point is given by the fraction r1 of the total number of
observations, the ending point by the fraction r2, while the window
size by rw = r2 − r1. The ADF regression is given by

yt = µ+ ρyt−1 +
p∑

i=1
φi

rw ∆yt−i + εt (20)

where the null hypothesis is of a unit root ρ = 1 versus an
alternative of a mildly explosive autoregressive coefficient ρ > 1.

The backward sup ADF test proposed by PSY (2015) fixes the
endpoint at r2 while the window size is expanded from an initial
fraction r0 to r2, so that the test statistic is given by:

BSADFr2(r0) = sup
r1∈[0,r2−r0]

ADF r2
r1 (21)
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The generalized sup ADF (GSADF) test is computed by repeatedly
performing the BSADF test for each r2 ∈ [r0, 1]:

GSADF (r0) = sup
r2∈[r0,1]

BSADFr2(r0) (22)

PSY (2015, Theorem 1) provides the limiting distribution of (22)
under the null of a random walk with asymptotically negligible drift
(vs an alternative of a mildly explosive process), while critical values
are obtained by numerical simulation.

If the null hypothesis of no bubbles is rejected, it is then possible to
date-stamp the starting and ending points of one (or more)
bubble(s) in a second step. . .
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More specifically,
→ the starting point is given by the date -denoted as Tre - when the
sequence of BSADF test statistics crosses the critical value from
below,

→ whereas the ending point -denoted as Trf - when the BSADF
sequence crosses the corresponding critical value from above:

r̂e = inf
r2∈[r0,1]

{
r2 : BSADFr2(r0) > cvβT

r2

}
(23)

r̂f = inf
r2∈[r̂e+δ log(T )/T ,1]

{
r2 : BSADFr2(r0) < cvβT

r2

}
(24)

where cvβTr2 is the 100(1− βT )% right-sided critical value of the
BSADF statistic based on bTr2c observations, b·c is the integer fun.

δ is a tuning parameter which determines the minimum duration for
a bubble and is usually set to 1, see PSY (2015) and references
therein, thus implying a minimum bubble-duration condition of
ln(T ) observations. 68 / 72
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Malhotra and Maloo (2014) tested for the presence of multiple
bubbles using the GSADF test with data ranging from mid-2011 till
February 2014:

⇒ they found evidence of explosive behaviour in the bitcoin-USD
exchange rates during August – October 2012 and November,
2013 – February, 2014 .

⇒ They suggested that the first episode of bubble behavior (August
– October 2012) could be attributed to the sudden increase in media
attention towards bitcoin,

⇒ whereas the second episode to a large set of reasons including
the US debt ceiling crisis, the shutdown of Silk Road by the FBI,
the rise of Chinese exchange BTC-China, and the increasing number
of warnings issued by regulatory authorities and central banks
worldwide following the shutdown of the Japanese exchange Mt.Gox.
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Bitcoin price series with periods of explosive behaviour according to
the GSADF test highlighted in red, (a minimum bubble duration of
30 days is used).
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Conclusions
Financial modelling of cryptocurrencies has only started and there
are several possible avenues for further research:

I Econometric methods for market and credit risk management
with cryptocurrencies prices are almost non-existent.

I Despite the changes in local regulations, arrival of new
investors, police intervention (Silk Road, BTC-e) and massive
improvements in mining hardware, there is no research work
dealing with structural breaks and long memory.

I All models examined so far are (log-)linear but, considering the
behavior of bitcoin prices, nonlinear models could be useful.

I Multi-disciplinary analyses are needed: IT related papers
focused mainly on electricity costs and energy and
computational efficiency, whereas economic related papers
rarely considered these factors.
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Conclusions
More details can be found here:

1. Fantazzini, D., Nigmatullin, E., Sukhanovskaya, V., & Ivliev, S.
(2016). Everything you always wanted to know about bitcoin
modelling but were afraid to ask. Part 1. Applied
Econometrics, 44, 5-24. Available at:
https://ideas.repec.org/a/ris/apltrx/0301.html

2. Fantazzini, D., Nigmatullin, E., Sukhanovskaya, V., & Ivliev, S.
(2017). Everything you always wanted to know about bitcoin
modelling but were afraid to ask. Part 2. Applied
Econometrics, 45, 5-28. Available at:
https://ideas.repec.org/a/ris/apltrx/0308.html

3. I am writing a textbook about it . . . stay tuned . . .
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